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Exponentially hard problems are sometimes polynomial, a large deviation analysis of search
algorithms for the random satisfiability problem, and its application to stop-and-restart resolutions
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A large deviation analysis of the solving complexity of random 3-satisfiability instances slightly below
threshold is presented. While finding a solution for such instances demands an exponential effort with high
probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly
in the size of the instance only. This exponentially small probability of easy resolutions is analytically calcu-
lated, and the corresponding exponent is shown to be sntallabsolute valugthan the growth exponent of
the typical resolution time. Our study therefore gives some theoretical basis to heuristic stop-and-restart solving
procedures, and suggests a natural cutbi# size of the instangdor the restart.
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Computational problems are usually divided into two (1) Choose a variable and its value (T,F) according to
classes. They are easy if there exists a solving procedure some heuristic rule (Split);

whose running time grows at most polynomially with the
size of the problem, or hard if no such algorithm is believed
to exist, and the best avalaible procedures may require an a. If all clauses are satisfied, then stop: a solution is found,
exponentially growing tim¢1]. The polynomial vs exponen- b: If a contradiction appears, negate the last chosen
tial classification was enriched in the past decades through va;’“lze and 8o ;0 Zh(Bathra.c';"g)h’ ireadv b
the derivation of quantitative bounds on resolution complex- n}; gatf ;eov:zzs tiecnzfjgv:;;znsef;abf;ﬁyal;:io)v’ e,ien
ity, and the study of average performances of various reso- . it here is at least one clause with one variable, fix the
lution algorithms for computational tasks with model input variable to satisfy the clause and go to 2 (Unit Propagation),
distributions. d:Eisegotol.

In this paper, we show that, though the polynomial/ ) )
exponential dichotomy certainly applies to the typical reso- FIG- 1. DPLL algorithm. When a variable has been chosen at
lution complexity of computational problem, it may not be step(), e.g.,x=T, at step(2) some clauses are satisfied, e@.,

. . . . =(x OR y OR 2 and eliminated, others are reduced, e@.,
so for large deviations from typical behavior. Typically ex- —(not X ORy OR 2)—C=(y OR 2). If some clauses include one

pongntla_lly hard problems may sometimes be solved in pOIy\'/ariable only, e.g.C=y, the corresponding variable is automati-
nomial time, a phenomenon that we take advantage of t@qy fixed to satisfy the clausey&T). This unit-clause(UC)
accelerate resolution drastically. propagation(2¢) is repeated up to the exhaustion of all UC. Con-
We concentrate here on random 3-Satisfiab{BySAT), a  tradictions result from the presence of two opposite UC, €qg.,
paradigm of hard combinatorial problems recently studied=(y),C’=(noty). A solution is found when no clauses are left.
using statistical physics tools and concep2s3] as e.g., The heuristic studied here is the generalized &JC) rule: a
number partitioning4], vertex covef5], etc. to which com-  Vvariable is chosen at steft) from one of the 2-clauses, or from a
puter scientists have devoted a great attention over the pagiclause if no 2-clause is present, and fixed to satisfy the clause.
years|6—8|. An instance of random 3-SAT is defined by a set The search process of DPLL is represented by a(fée 2) 'V\_/hose
of M constraints(clauses on N boolean(i.e., true or falsg nodes cor.respond tﬁ.]‘)’. and edges td@2). Bran(;h extremities are
variables. Each clause is the logicaik of three randomly ~Marked with contradiction€ (2b), or by a solutionS (2a).
chosen variables, or of their negations. The question is to
decide whether there exists a logical assignment of the varisurely satisfiable, but finding a solution may be easy or hard,
ables satisfying all the clausdsalled solution. The best depending on the value a@f. A dynamical transitior]3,12]
currently known algorithm to solve 3-SAT is the Davis- takes place aty =3.003 (for the heuristic used by DPLL
Putnam-Loveland-Logeman(®PLL) procedurd6] (Fig. ).  shown in Fig. 1 separating a polynomial regimea(
The sequence of assignments of variables made by DPLL irc; :Q~N, search treé\ on Fig. 2 [13,14] from an expo-
the course of instance solving can be represented as a searvéntial regime &>« :Q~2N®, search treeB). This pat-
tree(Fig. 2), whose siz& (number of nodess a convenient tern of complexity, and the value af(«) were obtained
measure of the complexity. For very large sizbs,—o at  through an analysis of DPLL dynamics, reminiscent of real-
fixed ratioa=M/N), some static and dynamical phase tran-space renormalization in statistical physig$ DPLL gener-
sitions arisg2,7-10. Instances with a ratio of clauses per ates some dynamical flow of the instance, whose trajectory
variablea> ac-=4.3 are almost surely unsatisfiable and ob-lies in the phase diagram of the+2-SAT model[2], an
taining proofs of refutation require an exponential effortextension of 3-SAT, wherp=<1 is the fraction of 3-clauses
[3,11]. Below the static threshold, instances are almost (Fig. 2).

(2) Analyze the implications of the choice on all the clauses :
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5 ‘ — ' We focus hereafter on the large deviations of complexity

‘ " in the upper SAT phase| <a<ac. Using numerical ex-
periments and analytical calculations, we show that, though
complexity Q almost surely grows as'?, there is a finite,
but exponentially small, probability 2¥¢ that Q is bounded
from above byN only. In other words, finding solutions to
these SAT instances is almost always exponentially hard, and
very rarely easypolynomial timg. Taking advantage of the
fact that{ is smaller thanw, we show how systematic re-
starts of the heuristic may decrease substantially the overall
search cost. Our study therefore gives some theoretical basis
to stop-and-restart(SR) solving procedures empirically
known to be efficienf15], and suggests a natural cutoff for
the stop.

Distributions of resolution times) for «a=3.5 are re-
ported in Fig. 3. The histogram @f= (log,Q)/N essentially
exhibits a narrow pealeft side followed by a wider bump
(right side. As N grows, the right peak acquires more and

FIG. 2. Phase diagram of2p-SAT and first branch trajectories more weight, while the left peak progressively disappears.
for satisfiable instances. The threshold ling(p) (bold full line)  The center of the right peak gets slightly shifted to the left,
separates SATlower part of the planefrom unSAT (upper pait  pyt reaches a finite value* =0.035 asN— c [3]. This right
phases. Departure points for DPLL trajectories are located on thBeak thus corresponds to the core of exponentially hard reso-
3-SAT vertical axisempty circles. Arrows indicate the direction of | tions: resolutions of instances almost surely require a time

“motion” along trajectories(dashed curvesparametrized by the i imilar to Y¢* the sizeN gets | . t
fraction t of variables set by DPLL. For small ratiog<« scaling simriar to as e sizev gets large, in agreemen
with the above discussion.

(=3.003 for the GUC heuristj¢ branch trajectories remain con- . .
fined in the SAT phase, end i8 of coordinates (1,0), where a On the contrary, the abscissa of the maximum of the left

solution is found(with a search process reported on tie For ~ Peak vanishes as Igly/N when the sizeN increases, indicat-
ratios a, <a<ac, the branch trajectory intersects the thresholding that the left peak accounts for polynomiéhear) reso-
line at some poinG. A contradiction almost surely arises before the lutions. Its maximum is located &/N=0.2—-0.25, with
trajectory crosses the dotted curwe= 1/(1—p) (pointD), and ex- weak dependence od. The cumulative probability);, to
tensive backtracking up 1@ permits to find a solutiofisearch tree  have a complexityQ less than, or equal tbl, decreases ex-
B). With exponentially small probability, the trajectofgot-dashed ~ ponentially:P;, =2 N¢ with /=0.011+0.001(Inset of Fig.
curve, full arrow is able to cross the “dangerous” region where 4). In the following, we will concentrate on linear resolutions
contradictions are likely to occusearch tree similar td\); it then only (an analysis of the distribution of exponential resolu-
exits from this regior{pointD’) and ends up with a solutiofow-  tions for the problem of the vertex covering of random
est dashed trajectory graphs[5] can be found if16]).
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01 - where 6 denotes the Kronecker delta functiofy=1 if C
T =0; 0 otherwise. Variables appearing in Ed) are as fol-

lows. AJEC{—CJ, vE5c£, z; (wj) is the number ofj
clauses which are satisfigdeduced toj—1 clauses when
the (T+1)th variable is assigned. These are stochastic vari-
ables drawn from several binomial distributior8;"
=(x)pK(1-p)- K. Parameterp;=j/(N—T) equals the
probability that g clause contains the variable just assigned
by DPLL.

The introduction of the generating functioR(y;T)
=Ecey‘cl3(C,T), allows us to express the evolution equa-
tion for the state probabilities in a compact manner,

0.08 |

0.06 |

-Log, P;,, Log, N,

o N & O ®
T
\\\
[&N
\
\

0o 2 4 6 8 10
Size N/100 ’

0.04 | -
)

aemm O

Exponents {, »

1
\

0.02
P(y;T+1)=e 910P(g(y):T)+ (e~ 920 —e~9)
XP(=%,02(y), 93(y);T), 2

o
© ===
N
~
L .
\
N
\

3.75 4 4.25

325 35
ratio o of clauses per var.

where g;(y)=y;+In[1+%(y)/N], v (V)=7(y;.¥j-1)
=j[e7Yi(1+e¥i-1)/2—1]/(1—t) for j=1,2,3 (yo=—0).
From Eq.(1), theC;s undergaO(1) changes each time a
variable is fixed. AfterT=tN assignments, the densities
=C;/N of clauses have been modified @(1). This trans-

lates into largeN ansatz for the state probabilitf(C;T)

=eNe(¢) and for the generating functionP(y;T)

=eN¢:) up to non exponential itN terms. ¢ and ¢ are
Further numerical investigations show that, in easy resosimply related to each other through a Legendre transform.

lutions, the solution is essentially found at the end of the firsin particular, ¢(0;t) is the logarithm of the probabilitydi-

branch, with a search tree of tyge and notB, in Fig. 2.  vided by N) that the first branch has not been hit by any

Easy resolution trajectories are able to cross the “dangeroustontradiction after a fractiot of variables have been as-

region extending beyond poillt in Fig. 2, contrary to most signed. The most probable values of the densitigs) of j

trajectories which backtrack earlier. BeyoBd unit clauses clauses are equal to the partial derivativespah y=0.

(UC) indeed accumulate. Their numb€y becomes of the When DPLL starts running on a 3-SAT instance, clauses

order of N (C;/N=0.022 for «=3.5), and the probability are reduced and some UC generated. Next they are elimi-

that the branch survives, i.e., that no two contradictory UCnhated through UC propagation, and splits occur frequently

are present, is exponentially small My in agreement with  (Fig. 1). The numberC, of UC remains bounded with re-

the scaling of the left peak weight in Fig. 3. spect to the instance si2¢ and the densitg,(t) =de/dy;
Calculation of{ requires the analysis of the first descentidentically vanishes.¢ does not depend ory;, and

in the search treéFig. 2). Each time DPLL assigns a vari- ¢(y,,Y3;t) obeys the following partial differential equation

able, some clauses are eliminated and others are reduced (®DE)

left unchangedFig. 1). We thus characterize an instance by

its state C=(C4,C,,C3), where C; is the number ofj dp Jep de

clauses it includesj&1,2,3). Initially, C=(0,00N). Let oo Y2t yz(yz,yz;t)WﬂL Ys(yz,yaﬂ)w. ©)

us callP(C;T) the probability that the assignment Bivari- 2 :

ables has produced no contradiction and an instance wi

state C. P obeys a Markovian evolutionP(C;T+1)
=3cK(C,C";T)P(C';T) where the entries of the transi-
tion matrixK read

FIG. 4. Log of complexity using DPLL¢: simulations, circles;
theory from [3], dotted ling and SR ¢: simulations, squares;
theory, full line as a function of ratiax. Inset: minus log of the
cumulative probabilityP;,, of complexitiesQ=<N as a function of
the size for 106 N<400 (full line); log of the number of restarts
N,est NECESSary to find a solution for 18N <1000 (dotted ling

for «=3.5. Slopes ar¢=0.0011 and?= 0.00115, respectively.

tﬂ/e have solved analytically PDE3) with initial condition
¢(Y;0)= agy3. The high probability scenario is obtained for
y>=Y3=0: ¢(0,0;t) =0 indicates that the probability of sur-
vival of the branch is not exponentially small M[14], and

the partial derivatives,(t),c5(t) give the typical densities
of 2- and 3-clauses, in full agreement with Chao and Fran-
co’s result[13]. We plot in Fig. 2 the corresponding resolu-
tion trajectories for various initial ratio®,, using the change

of variablesp=c3/(c,+¢3), @=(c,+C3)/(1—1). Further-
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more, our calculation provides a complete description of rare
deviations of the resolution trajectory from its highly prob-
able locus, giving access to the exponentially small prob-
abilities thatp,« differ from their most probable values at
“time” t.
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The assumptionC;=0(1) breaks down for the most N2%™N for o=3.5, with an exponential gain with respect to
probable trajectory at some fractidp, e.g.,tp=0.308 for ~DPLL one-run complexity, 2%, Results of SR experi-
ap=23.5 at which the trajectory hits poif@ on Fig. 2. Be- ments are reported in Fig. 4. The typical numbey,;
yond D, UC accumulate, and the probability of survival of =2N¢ of restarts grows indeed exponentially with the dige

the first branch becomes exponentially smalNinvariables  \yith a ratezz 0.0115+0.001 equal tof. The equality be-
are almost always assigned through unit propagatmn:

>0. ¢ now depends ory; and, from Eq.(1), obeys the tween{ and{ confirms the equivalence between sample-to-

sample(Fig. 3) and run-to-run(at fixed sampledistributions

following PDE: of complexities for large sizes].
P 3 P Performances are greatly enhanced by the use ofs8&
— =yt > yi(yit) —. (4)  Fig. 4 for comparison betweefiand w). While with usual
ot =1 i DPLL, we were able to solve instances with 500 variables in

about one day of CPU fat= 3.5, instances with 1000 vari-

We have solved PDE) through an expansion af in pow- ables were solved with SR in 15 minutes on the same com-

ers ofy, whose coefficients obey, from E@4), a set of puter
coupled linear ordinary differential equatiof®DES. The .

o . Our work therefore provides some theoretical support to
initial conditions for the ODEs are chosen to match the ex- - o
pansion of the exact solution of E), that is, the typical the use of SR15,16, and in addition suggests a natural

trajectory and its large deviations, at tire. The quality of cutoff at which the search is halted and restarted, the deter-

L > ; . mination of which is usually widely empirical and problem
the apprOX|mat|on IMProves rapidly with the ordeof the dependent. If a combinatorial problem is efficiently solved
expansion, and no difference was found betwker8 and

k=4 resultsc, first increases, reaches its top valeg){"®* (polynomial timg by a search heuristic for some values of
1 ' p valeg)(™, the control parameter of the input distribution, there might be

an exponentially small probability that the heuristic is still
S§uccessful(in polynomial time in the range of parameters

- : where resolution almost surely requires massive backtrack-
Ng -0

2 for large N, with =—¢(0tp/)/In2. The calculated ing and exponential effort. When the decay rate of the poly-

values of {=0.01,(,)"**=0.022 andQ/N=0.21 for @  pomia| time resolution probability is smaller than the
=3.5 are in very good agreement with numerics. Figure Aa/

h h h ulati rowth ratew of the typical exponential resolution time, SR
shows the agreement between theory and simulations ov@ri, 4 cutoff in the search equal to a polynomial of the

the whole rangey <a<ac. _ instance size will lead to an exponential speed up of resolu-
The existence of rare but easy resolutions suggests the uggq

of a systematic SR procedure to speed up resolution: if a

solution is not found befor®& splits, DPLL is stopped and We thank A. Montanari and R. Zecchina for discussions
rerun after some random permutations of the variables andnd communication of their results prior to publication,
clauses. The expected numb¥éyr,, of restarts necessary to and the French Ministry of Research for partial financial
find a solution being equal to the inverse probabilit}/  support through the ACI Jeunes Chercheurs “Algorithmes
of linear resolutions, the resulting complexity should scale asl’Optimisation et Systmes Dsordonne Quantiques.”

surely occur(Fig. 2). The probability of survival scales as
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