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Exponentially hard problems are sometimes polynomial, a large deviation analysis of searc
algorithms for the random satisfiability problem, and its application to stop-and-restart resolutions
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A large deviation analysis of the solving complexity of random 3-satisfiability instances slightly below
threshold is presented. While finding a solution for such instances demands an exponential effort with high
probability, we show that an exponentially small fraction of resolutions require a computation scaling linearly
in the size of the instance only. This exponentially small probability of easy resolutions is analytically calcu-
lated, and the corresponding exponent is shown to be smaller~in absolute value! than the growth exponent of
the typical resolution time. Our study therefore gives some theoretical basis to heuristic stop-and-restart solving
procedures, and suggests a natural cutoff~the size of the instance! for the restart.
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Computational problems are usually divided into tw
classes. They are easy if there exists a solving proce
whose running time grows at most polynomially with th
size of the problem, or hard if no such algorithm is believ
to exist, and the best avalaible procedures may require
exponentially growing time@1#. The polynomial vs exponen
tial classification was enriched in the past decades thro
the derivation of quantitative bounds on resolution compl
ity, and the study of average performances of various re
lution algorithms for computational tasks with model inp
distributions.

In this paper, we show that, though the polynomi
exponential dichotomy certainly applies to the typical re
lution complexity of computational problem, it may not b
so for large deviations from typical behavior. Typically e
ponentially hard problems may sometimes be solved in p
nomial time, a phenomenon that we take advantage o
accelerate resolution drastically.

We concentrate here on random 3-Satisfiability~3-SAT!, a
paradigm of hard combinatorial problems recently stud
using statistical physics tools and concepts@2,3# as e.g.,
number partitioning@4#, vertex cover@5#, etc. to which com-
puter scientists have devoted a great attention over the
years@6–8#. An instance of random 3-SAT is defined by a s
of M constraints~clauses! on N boolean~i.e., true or false!
variables. Each clause is the logicalOR of three randomly
chosen variables, or of their negations. The question is
decide whether there exists a logical assignment of the v
ables satisfying all the clauses~called solution!. The best
currently known algorithm to solve 3-SAT is the Davi
Putnam-Loveland-Logemann~DPLL! procedure@6# ~Fig. 1!.
The sequence of assignments of variables made by DPL
the course of instance solving can be represented as a s
tree~Fig. 2!, whose sizeQ ~number of nodes! is a convenient
measure of the complexity. For very large sizes (M ,N→` at
fixed ratioa5M /N), some static and dynamical phase tra
sitions arise@2,7–10#. Instances with a ratio of clauses p
variablea.aC.4.3 are almost surely unsatisfiable and o
taining proofs of refutation require an exponential effo
@3,11#. Below the static thresholdaC , instances are almos
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surely satisfiable, but finding a solution may be easy or ha
depending on the value ofa. A dynamical transition@3,12#
takes place ataL.3.003 ~for the heuristic used by DPLL
shown in Fig. 1! separating a polynomial regime (a
,aL :Q;N, search treeA on Fig. 2! @13,14# from an expo-
nential regime (a.aL :Q;2Nv, search treeB). This pat-
tern of complexity, and the value ofv(a) were obtained
through an analysis of DPLL dynamics, reminiscent of re
space renormalization in statistical physics@3#. DPLL gener-
ates some dynamical flow of the instance, whose trajec
lies in the phase diagram of the 21p-SAT model @2#, an
extension of 3-SAT, wherep<1 is the fraction of 3-clauses
~Fig. 2!.

FIG. 1. DPLL algorithm. When a variable has been chosen
step~1!, e.g.,x5T, at step~2! some clauses are satisfied, e.g.,C
5(x OR y OR z! and eliminated, others are reduced, e.g.,C
5(not x OR y OR z)→C5(y OR z). If some clauses include on
variable only, e.g.,C5y, the corresponding variable is automa
cally fixed to satisfy the clause (y5T). This unit-clause~UC!
propagation~2c! is repeated up to the exhaustion of all UC. Co
tradictions result from the presence of two opposite UC, e.g.C
5(y),C85(not y). A solution is found when no clauses are le
The heuristic studied here is the generalized UC~GUC! rule: a
variable is chosen at step~1! from one of the 2-clauses, or from
3-clause if no 2-clause is present, and fixed to satisfy the cla
The search process of DPLL is represented by a tree~Fig. 2! whose
nodes correspond to~1!, and edges to~2!. Branch extremities are
marked with contradictionsC ~2b!, or by a solutionS ~2a!.
©2002 The American Physical Society01-1
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FIG. 2. Phase diagram of 21p-SAT and first branch trajectorie
for satisfiable instances. The threshold lineaC(p) ~bold full line!
separates SAT~lower part of the plane! from unSAT ~upper part!
phases. Departure points for DPLL trajectories are located on
3-SAT vertical axis~empty circles!. Arrows indicate the direction of
‘‘motion’’ along trajectories~dashed curves! parametrized by the
fraction t of variables set by DPLL. For small ratiosa,aL

(.3.003 for the GUC heuristic!, branch trajectories remain con
fined in the SAT phase, end inS of coordinates (1,0), where
solution is found~with a search process reported on treeA). For
ratios aL,a,aC , the branch trajectory intersects the thresho
line at some pointG. A contradiction almost surely arises before t
trajectory crosses the dotted curvea51/(12p) ~point D), and ex-
tensive backtracking up toG permits to find a solution~search tree
B). With exponentially small probability, the trajectory~dot-dashed
curve, full arrow! is able to cross the ‘‘dangerous’’ region whe
contradictions are likely to occur~search tree similar toA); it then
exits from this region~point D8) and ends up with a solution~low-
est dashed trajectory!.
03710
We focus hereafter on the large deviations of complex
in the upper SAT phaseaL,a,aC . Using numerical ex-
periments and analytical calculations, we show that, tho
complexityQ almost surely grows as 2Nv, there is a finite,
but exponentially small, probability 22Nz that Q is bounded
from above byN only. In other words, finding solutions to
these SAT instances is almost always exponentially hard,
very rarely easy~polynomial time!. Taking advantage of the
fact thatz is smaller thanv, we show how systematic re
starts of the heuristic may decrease substantially the ove
search cost. Our study therefore gives some theoretical b
to stop-and-restart~SR! solving procedures empirically
known to be efficient@15#, and suggests a natural cutoff fo
the stop.

Distributions of resolution timesQ for a53.5 are re-
ported in Fig. 3. The histogram ofv5(log2Q)/N essentially
exhibits a narrow peak~left side! followed by a wider bump
~right side!. As N grows, the right peak acquires more an
more weight, while the left peak progressively disappea
The center of the right peak gets slightly shifted to the le
but reaches a finite valuev* .0.035 asN→` @3#. This right
peak thus corresponds to the core of exponentially hard r
lutions: resolutions of instances almost surely require a t
scaling similar to 2Nv* as the sizeN gets large, in agreemen
with the above discussion.

On the contrary, the abscissa of the maximum of the
peak vanishes as log2N/N when the sizeN increases, indicat-
ing that the left peak accounts for polynomial~linear! reso-
lutions. Its maximum is located atQ/N.0.220.25, with
weak dependence onN. The cumulative probabilityPlin to
have a complexityQ less than, or equal toN, decreases ex
ponentially:Plin522Nz with z.0.01160.001~Inset of Fig.
4!. In the following, we will concentrate on linear resolution
only ~an analysis of the distribution of exponential reso
tions for the problem of the vertex covering of rando
graphs@5# can be found in@16#!.
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FIG. 3. Histograms of the logarithmv of the
complexity Q ~base 2, and divided byN) for a
53.5 and different sizesN. Many instances are
drawn randomly, and for each sample, DPLL
run until a solution is found~very few unsatisfi-
able instances can be present and are discard!.
Because of the largeN limit this instance-to-
instance distribution is equivalent to the run-t
run distribution on the same instance, comin
from the randomness in the assignments of va
ables by DPLL; the latter is indeed almost sure
independent of the particular instances. See R
@7# and the inset of Fig. 4 for a proof of this
equivalence.
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Further numerical investigations show that, in easy re
lutions, the solution is essentially found at the end of the fi
branch, with a search tree of typeA, and notB, in Fig. 2.
Easy resolution trajectories are able to cross the ‘‘dangero
region extending beyond pointD in Fig. 2, contrary to most
trajectories which backtrack earlier. BeyondD, unit clauses
~UC! indeed accumulate. Their numberC1 becomes of the
order of N (C1 /N.0.022 for a53.5), and the probability
that the branch survives, i.e., that no two contradictory
are present, is exponentially small inN, in agreement with
the scaling of the left peak weight in Fig. 3.

Calculation ofz requires the analysis of the first desce
in the search tree~Fig. 2!. Each time DPLL assigns a var
able, some clauses are eliminated and others are reduc
left unchanged~Fig. 1!. We thus characterize an instance
its state C5(C1 ,C2 ,C3), where Cj is the number ofj
clauses it includes (j 51,2,3). Initially, C5(0,0,a0N). Let
us callP̃(C;T) the probability that the assignment ofT vari-
ables has produced no contradiction and an instance
state C. P̃ obeys a Markovian evolutionP̃(C;T11)
5(C8K(C,C8;T) P̃(C8;T) where the entries of the trans
tion matrix K read

K~C,C8;T!5B
p3

C38 ,D3 (
w350

D3

B1/2
D3 ,w3 (

z250

C282v

B
p2

C282v,z2 (
w250

z2

B1/2
z2 ,w2

3 (
z150

C18211v
1

2z1
B

p1

C18211v,z1

3dz22D22w31vdz12D12w2112v ~1!

FIG. 4. Log of complexity using DPLL (v: simulations, circles;
theory from @3#, dotted line! and SR (z: simulations, squares
theory, full line! as a function of ratioa. Inset: minus log of the
cumulative probabilityPlin of complexitiesQ<N as a function of
the size for 100<N<400 ~full line!; log of the number of restarts
Nrest necessary to find a solution for 100<N<1000 ~dotted line!

for a53.5. Slopes arez50.0011 andz̄50.00115, respectively.
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wheredC denotes the Kronecker delta function:dC51 if C
50; 0 otherwise. Variables appearing in Eq.~1! are as fol-
lows. D j[Cj82Cj , v[dC

18
, zj (wj ) is the number ofj

clauses which are satisfied~reduced toj 21 clauses! when
the (T11)th variable is assigned. These are stochastic v
ables drawn from several binomial distributionsBp

L,K

[(K
L )pK(12p)L2K. Parameterpj5 j /(N2T) equals the

probability that aj clause contains the variable just assign
by DPLL.

The introduction of the generating functionP(y;T)
5(Cey•CP̃(C,T), allows us to express the evolution equ
tion for the state probabilities in a compact manner,

P~y;T11!5e2g1(y)P„g~y!;T…1~e2g2(y)2e2g1(y)!

3P„2`, g2~y!, g3~y!;T…, ~2!

where gj (y)5yj1 ln@11gj(y)/N#, g j (y)[g j (yj ,yj 21)
5 j @e2yj(11eyi 21)/221#/(12t) for j 51,2,3 (y0[2`).

From Eq.~1!, theCjs undergoO(1) changes each time
variable is fixed. AfterT5tN assignments, the densitiescj
5Cj /N of clauses have been modified byO(1). This trans-
lates into largeN ansatz for the state probability,P̃(C;T)
5eNw(c;t), and for the generating function,P(y;T)
5eNw(y;t), up to non exponential inN terms.w and w̃ are
simply related to each other through a Legendre transfo
In particular,w(0;t) is the logarithm of the probability~di-
vided by N) that the first branch has not been hit by a
contradiction after a fractiont of variables have been as
signed. The most probable values of the densitiescj (t) of j
clauses are equal to the partial derivatives ofw in y50.

When DPLL starts running on a 3-SAT instance, claus
are reduced and some UC generated. Next they are e
nated through UC propagation, and splits occur frequen
~Fig. 1!. The numberC1 of UC remains bounded with re
spect to the instance sizeN, and the densityc1(t)5]w/]y1
identically vanishes.w does not depend ony1, and
w(y2 ,y3 ;t) obeys the following partial differential equatio
~PDE!

]w

]t
52y21g2~y2 ,y2 ;t !

]w

]y2
1g3~y2 ,y3 ;t !

]w

]y3
. ~3!

We have solved analytically PDE~3! with initial condition
w(y;0)5a0y3. The high probability scenario is obtained fo
y25y350: w(0,0;t)50 indicates that the probability of sur
vival of the branch is not exponentially small inN @14#, and
the partial derivativesc2(t),c3(t) give the typical densities
of 2- and 3-clauses, in full agreement with Chao and Fr
co’s result@13#. We plot in Fig. 2 the corresponding resolu
tion trajectories for various initial ratiosa0, using the change
of variablesp5c3 /(c21c3), a5(c21c3)/(12t). Further-
more, our calculation provides a complete description of r
deviations of the resolution trajectory from its highly pro
able locus, giving access to the exponentially small pr
abilities thatp,a differ from their most probable values a
‘‘time’’ t.
1-3
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The assumptionC15O(1) breaks down for the mos
probable trajectory at some fractiontD , e.g., tD.0.308 for
a053.5 at which the trajectory hits pointD on Fig. 2. Be-
yond D, UC accumulate, and the probability of survival
the first branch becomes exponentially small inN. Variables
are almost always assigned through unit propagation:c1
.0. w now depends ony1 and, from Eq.~1!, obeys the
following PDE:

]w

]t
52y11(

j 51

3

g j~y;t !
]w

]yj
. ~4!

We have solved PDE~4! through an expansion ofw in pow-
ers of y, whose coefficients obey, from Eq.~4!, a set of
coupled linear ordinary differential equations~ODEs!. The
initial conditions for the ODEs are chosen to match the
pansion of the exact solution of Eq.~3!, that is, the typical
trajectory and its large deviations, at timetD . The quality of
the approximation improves rapidly with the orderk of the
expansion, and no difference was found betweenk53 and
k54 results.c1 first increases, reaches its top value (c1)max,
then decreases and vanishes attD8 when the trajectory come
out from the dangerous region where contradictions alm
surely occur~Fig. 2!. The probability of survival scales a
22Nz for large N, with z52w(0;tD8)/ ln 2. The calculated
values of z.0.01,(c1)max.0.022 andQ/N.0.21 for a
53.5 are in very good agreement with numerics. Figure
shows the agreement between theory and simulations
the whole rangeaL,a,aC .

The existence of rare but easy resolutions suggests the
of a systematic SR procedure to speed up resolution:
solution is not found beforeN splits, DPLL is stopped and
rerun after some random permutations of the variables
clauses. The expected numberNrest of restarts necessary t
find a solution being equal to the inverse probability 1/Plin
of linear resolutions, the resulting complexity should scale
L

Sc

I-
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N20.011N for a53.5, with an exponential gain with respect
DPLL one-run complexity, 20.035N. Results of SR experi-
ments are reported in Fig. 4. The typical numberNrest

52Nz̄ of restarts grows indeed exponentially with the sizeN,
with a rate z̄50.011560.001 equal toz. The equality be-
tweenz and z̄ confirms the equivalence between sample-
sample~Fig. 3! and run-to-run~at fixed sample! distributions
of complexities for large sizes@8#.

Performances are greatly enhanced by the use of SR~see
Fig. 4 for comparison betweenz andv). While with usual
DPLL, we were able to solve instances with 500 variables
about one day of CPU fora53.5, instances with 1000 vari
ables were solved with SR in 15 minutes on the same c
puter.

Our work therefore provides some theoretical support
the use of SR@15,16#, and in addition suggests a natur
cutoff at which the search is halted and restarted, the de
mination of which is usually widely empirical and proble
dependent. If a combinatorial problem is efficiently solv
~polynomial time! by a search heuristic for some values
the control parameter of the input distribution, there might
an exponentially small probability that the heuristic is s
successful~in polynomial time! in the range of parameter
where resolution almost surely requires massive backtra
ing and exponential effort. When the decay rate of the po
nomial time resolution probabilityz is smaller than the
growth ratev of the typical exponential resolution time, S
with a cutoff in the search equal to a polynomial of th
instance size will lead to an exponential speed up of res
tions.
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